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Inductive Bias and Performance Bounds: For the Case of Multi-Task Learning

Jin Kim

I. INTRODUCTION

Machine learning typically relies on large number of data. Traditional statistics used to be studied
from decades ago, but availability of large number of dataset and increasing computational power surely
affected recent rush on machine learning. However on the other hand, if the number of samples is limited,
the performance is not guaranteed to meet the goal. Moreover, theories about performance lower bound
show that with small number of samples, there is certain amount of regret for worst-case probability
distribution[1]. To overcome this limitation, everything that can be utilized to improve convergence rate and
generalization shall be considered. In general, any factors making some hypotheses more admissible than
others called inductive bias. For example, setting up the model for the problem and choosing appropriate
algorithm by human expert is one of inductive bias. Also, knowledge on domain or prior over feature
space and preprocessing on data—e.g. clustering, hierarchical structuring, adjustments—can be considered
as inductive biases.

Multi-task learning(MTL) was first proposed by Caruana[3], and it deals with concurrent learning
of several related tasks. According to the author, each task can behave like if they are the mutually
inductive bias. Originally MTL designed for neural network and decision tree method and showed its
benefit numerically, but numerous studies have conducted on both theory and applications.

In this report, Liu’s paper[2] will be mainly discussed. Indeed, Improvement on generalization per-
formance has been studied for a long time from Caruana’s original paper[3]. Baxter[4] also proposed
firm theoretical framework on inductive biases including MTL by considering a hypotheses family, set of
hypothesis sets. [2] works on explicit formula for performance bounds for specific task of interest. For the
earlier part of this report, the problem definition will be summarized. Then the major contribution of the
paper will be followed. Finally, some remarks from the paper and my own discussion will be presented.

II. PRELIMINARIES

A. Multi-Task Learning

The multi-task learning problem discussed in this paper considers some Hilbert space for feature vector
and T binary classification tasks. Linear hypothesis, i.e. defined by RKHS will be used. Notations are:

• H : Feature Hilbert space with 〈·, ·〉 and ‖ · ‖
• z = (x,y) ∈H ×{−1,+1}: A training sample
• St = {zt,1, · · · ,zt,nt}: Sample sets for tth task
• H = {h(x) = 〈h,x〉 : h ∈H is a linear class
• l(z;h) = l(y,h(x)) is a loss function which is differentiable and σ -strongly convex over h and L

Lipschitz for any given sample z = (x,y)
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• The algorithm is to find:

min
w1,··· ,wT ,θ

1
T

T

∑
t=1

1
nt

nt

∑
i=1

l(yt,i,〈wt +θ ,xt,i〉) (1)

Note that each task may have individual underlying probability distribution, and each task have its own
sample set St . However, the learning is performed over all samples, {x1,1, · · · ,x1,n1, · · · ,xT,nT }. Also, since
hypothesis ht is linear sum of wt and θ , the minimizer is not unique. According to the Authors[2], more
constraints on wt and θ are required to make the problem well posed, such as norm regulation or sparsity
of wt or maximum condition of ‖θ‖. However, the author does not provide an specific regulation on them
in the paper.

Assumption 1 (Reconstruction): There exists a subset B⊆ {x1,1, · · · ,xT,nT }−{xt,1, · · · ,xt,nt} so that any
feature x drawn from the probability measure of tth task, x = ∑

N
j=1 α jb j +η for some real valued vector

‖α‖ ≤ r and small error ‖η‖ ≤ ε

This assumption provides the least amount of relationship between each tasks. If task of our interest
does not share a support on its feature distribution with others, then it is impossible to achieve with small
ε . If sample sizes of ‘other’ tasks are too small, the assumption also becomes hard to meet.

B. Stability and Generalization bound

To evaluate stability, let S(i) denotes S with single ith sample replaced by fresh sample zi for the task.
The hypothesis predicted by set S will be denoted as hS.

Definition 1 (Uniform stability): An algorithm is β uniformly stable on l(z;h) if

∀S ∈Z n,∀i ∈ [n],∀z,zi ∈Z , |l(y,h(i)S )− l(y,hS)≤ β

Note that if upper bound β is small, then the algorithm generalizes well. Suppose β is a function of
n, and β → 0 for n→ ∞, then β (n) is a generalization bound.

III. MAJOR CONTRIBUTIONS

In this chapter, few theorems related to my focus will be introduced. However, detailed proof and
mathematical tools are omitted in this report.

A. Generalization bound for θ

Suppose we are interested in a specific task t, then perturbation on St result in θ these theorems.
Theorem 1: For any z′t,i distributed from tth task, given wt , θ

S(i)t
and θSt meet following inequality

|l(yt ,〈wt +θ
S(i)t

,xt〉)− l(yt ,〈wt +θSt ,xt〉|

≤ max
z′t,i∈Zt

L|〈θ
S(i)t
−θSt ,xt〉|

≤ Lr max{nτ : τ 6= t}
2σ

√(2Lr
nt

)2

+
4σO(ε)

nt max{nτ : τ 6= t}
+

2Lr
nt
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1 show that θ is uniformly stable with respect to the domain of the tth task. For the second theorem,
ε = 0 and n1 = n2 = · · ·= nT = n are assumed for simplification.

Theorem 2: If ε = 0 and n1 = n2 = · · ·= nT = n≥ 2, and Z =
⋃

t Zt

max
z′t,i∈Z

L|〈θ
S(i)t
−θSt ,xt〉| ≤

2Lr2

σT

The second theorem claims that increasing number of multiple tasks, T � 1, provides non-vanishing
inductive bias and make generalization bound decrease.

B. Generalization bound for h

[2] further claim stability over h
Theorem 3: For any z′t,i distributed from tth task, for any h

t,S(i)t
and ht,St by ERM of multi-task problem,

the inequality holds.

|l(yt ,ht,S(i)t
(xt))− l(yt ,ht,St (xt))|

≤ max
z′t,i∈Zt

L|〈h
t,S(i)t
−ht,St ,xt〉|

≤ Lr max{nτ : τ 6= t}
2σ

√(2Lr
nt

)2

+
4σO(ε)

nt max{nτ : τ 6= t}
+

2Lr
nt


For simplicity, suppose ε = 0 then,

|l(yt ,ht,S(i)t
(xt))− l(yt ,ht,St (xt))|=

2L2r2 max{nτ : τ 6= t}
2ntσ

This theorem implies that if the set {nτ : τ 6= t} is fixed, generalization bounds of specific task is of order
O(1/nt), which is faster than O(1/

√
n) for single task learning problem.

IV. DISCUSSIONS

One of the main result of [2] is that; for linear MTL problem posed on (II-A), a particular task
has generalization bound with a convergence rate of order O(1/n) and O(1/T ) under some assumptions:
restriction on l, distribution on samples and how close each tasks are. With the rate faster than O(

√
logn/n)

or O(
√

1/n), MTL likely to generalize better with relatively few samples than single task learning. The
author also states that his approach can be applied to other algorithms as well, rather than empirical risk
minimizer.

Still there are some arguable points. First, single task learning problem can achieve of order O(1/n)
generalization bound[1]. The author briefly mention about this, and claim that their bounds too much rely
on regularization on the hypothesis set. However, considering multiple learning tasks on the same feature
space may be much more tough regulation. Also, an implicit regularization on wt or θ is mentioned in
MTL case as well.

Another thing to be discussed is trade-off between number of samples for additional tasks and ε . In
order to achieve small r and ε , B ⊆ {x1,1, · · · ,xT,nT }−{xt,1, · · · ,xt,nt} span and cover feature space. To
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insure this diversity, large number of samples on Sτ : τ 6= t is necessary. Meanwhile, the upper bound
convergence rate is proportional to max{nτ : τ 6= t}, which penalized by number of samples for other
tasks.

On the other hand, interesting questions arise from the paper. One is relationship with multi dimensional
label. The key difference is that MTL draw samples for each task separately, while later case considers the
situation that each sample has multiple label. They are essentially different, but as Caruana[3]’s original
formulation is more close to neural net with multiple output, The approach in [2] might be able to multi
dimensional label problem. If it is possible, considering augmented label would be interesting as well.
Sometimes estimation problem becomes easier if more parameters are augmented on the original problem,
for instance, EM algorithm. MTL can be applied to existing learning problem by augmenting labels.
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